Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399754

RESUMO

Grapevine trunk diseases (GTDs) attack the vine's wood, devastating vineyards worldwide. Chile is the world's fourth-largest wine exporter, and Cabernet Sauvignon is one of the most economically important red wine varieties. Botryosphaeria dieback is an important GTD, and Diplodia seriata is one of the main pathogenic species. Biocontrol studies of these pathogens are commonly carried out at different incubation times but at a single temperature. This study aimed to evaluate the biocontrol effect of Chilean PGPB and grapevine endophytic bacteria against D. seriata at different temperatures. We analyzed the biocontrol effect of Pseudomonas sp. GcR15a, Pseudomonas sp. AMCR2b and Rhodococcus sp. PU4, with three D. seriata isolates (PUCV 2120, PUCV 2142 and PUCV 2183) at 8, 22 and 35 °C. Two dual-culture antagonism methods (agar plug diffusion and double plate) were used to evaluate the in vitro effect, and an in vivo test was performed with Cabernet Sauvignon cuttings. In vitro, the greatest inhibitions were obtained using the agar plug diffusion method and at a temperature of 8 °C, where Rhodococcus sp. PU4 obtains a 65% control (average) and Pseudomonas sp. GcR15a a 57% average. At 22 °C, only strains of Pseudomonas sp. show control. At 35 °C, one Pseudomonas strain shows the highest control (38%), on average, similar to tebuconazole (33%), and then Rhodococcus sp. (30%). In vivo, a biocontrol effect is observed against two D. seriata isolates, while the PUCV 2142 proves to be more resistant to control. The biocontrol ability at low temperatures is promising for effective control in the field, where infections occur primarily in winter.

2.
Plant Dis ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923980

RESUMO

In Chile, lettuce is the vegetable that has increased in cultivated area the most in recent years, reaching 8,309 ha. The Coquimbo Region contributes the most to this growth in production with 3,284 ha in 2022 (ODEPA 2023). Most lettuce is grown under open field conditions, but there is significant production in greenhouses and an increase in hydroponic production systems (INIA 2017). During April to June 2021 and 2022 in the Coquimbo Region, butterhead-type lettuce seedlings (Lactuca sativa) cv. Neil, cultivated under a hydroponic system, showed severe brown to black lesions in the leaves and midrib (Figure S1). To determine the etiology of this problem, samples of diseased plants were taken. Pieces of symptomatic tissue were macerated, and the extract was spread on nutrient agar (NA) and on King's B medium (KB) and incubated at 23°C for 48 h. The bacterial colonies observed were predominantly circular, creamy-white in color with irregular margins and fluorescent in KB medium. Isolates were gram-negative strictly aerobic. LOPAT test (Lelliot et al. 1966) results of two selected isolates were: levan production (-), oxidase reaction (+), potato soft rot (-), arginine dihydrolase production (-), and tobacco hypersensitivity (+), which corresponds to the profile of Pseudomonas cichorii. Molecular identification was performed through amplification and sequencing of the 16S rRNA (GenBank Accessions No. OR540674 to OR540675), gyrB and rpoD genes (Hwang et al. 2005; Sarkar and Guttmann 2004) (GenBank Accessions No. OR558279 to OR558282). BLAST analysis of the 16S rRNA gene of the isolates resulted in a match with a 99.86% identity with P. cichorii type strain ATCC 10857 (NR_112070.1). BLAST analysis of gyrB and rpoD resulted in a match with a 100% (630/630 bp) and >99% (546/550 bp) identity respectively, with strains of P. cichorii. Five six-month-old lettuce plants cv. Desert Storm were pricked in the midrib with a toothpick smeared with a fresh colony grown on KB medium. Seven days after inoculation, the plants showed dark brown, watery lesions, characteristic of damage caused by P. cichorii (Figure S1). Bacteria were isolated again from the inoculated plants and were identified as P. cichorii using LOPAT and molecular identification techniques. Midrib rot caused by P. cichorii was reported as an emerging disease of greenhouse-grown lettuce by Cottyn et al. (2009). In Chile, P. cichorii was previously described affecting nectarine fruits (Pinto de Torres and Carreño Ibañez 1983) and reported as a pathogen of lettuce among others horticultural crops by Servicio Agrícola y Ganadero of the Government of Chile (Acuña 2008), but this is the first report of P. cichorii affecting hydroponic lettuce plants in Chile. These results will be the basis of future studies to evaluate the origin of the infection, the potential dissemination, and the implementation of disease management to avoid the damage caused by this bacterium in hydroponic systems in this crop of growing importance in Chile.

3.
Int J Biol Macromol ; 253(Pt 1): 126673, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37660850

RESUMO

Postharvest avocado losses are mainly due to anthracnose disease caused by Colletotrichum gloeosporioides. Chemical fungicides are effective, but their negative effects on health and the environment have led to the search for sustainable alternatives such as biopolymer-based coatings and natural compounds. Therefore, chitin nanocrystals (NCChit) were extracted using a sustainable deep eutectic solvent (DES) and chemically modified into oxidized chitin nanocrystals (O-NCChit) or deacetylated chitin nanocrystals (D-NCChit) to modulate and increase the charge surface density and the dispersibility of the crystals. The modified NCChits were dispersed with silk fibroins (SF), essential oil (EO), melatonin (MT) and/or phenylalanine (Phe) to elaborate active coatings. Antioxidant and antifungal in vitro analyses showed that the O-NCChit/SF-based coating had the best performance. In addition, in vivo tests were carried out through the artificial inoculation of C. gloeosporioides on coated avocados. O-NCChit/SF/MT-based coatings reduced the severity of anthracnose by 45 %, the same effect as the chemical fungicide (Prochloraz®). Moreover, avocado quality parameters during cold storage and the shelf-life period were also evaluated, where nonsignificant differences were observed. Therefore, this study demonstrates the great potential of O-NCChit and SF in combination with active compounds for the control of anthracnose in 'Hass' avocados.


Assuntos
Fibroínas , Fungicidas Industriais , Persea , Quitina/farmacologia , Persea/química , Fibroínas/farmacologia , Frutas/química , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
4.
Plants (Basel) ; 12(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631195

RESUMO

Botryosphaeria dieback (BD) occurs in young and old plants. In the field, the prevalence and severity of the disease increase proportionally with the age of vineyards. Among the pathogens that cause BD, Diplodia seriata is the most prevalent species in Chile and other countries with a Mediterranean climate. To date, no information is available on the susceptibility of adult wood to infection by this pathogen since most of the pathogenicity tests have been carried out on 1- or 2-year-old shoots or detached canes. Therefore, a pathogenicity test was carried out on plants under field conditions, with inoculations in 1-year-old shoots and 2- and 10-year-old wood in grapevine cv. Cabernet Sauvignon. A pathogenicity test was carried out with two isolates of D. seriata. The results for the plants show that D. seriata was significantly more aggressive on the 10-year-old than on the one- or two-year-old tissue, where the lesions were 4.3 and 2.3 cm on average, respectively. These results were compared with the lesions obtained from two-year-old canes after the isolates were activated in grape berries. Also, the Chilean isolates of D. seriata were compared phylogenetically with those from other countries, and no major differences were found between them. Our results are consistent with the damage observed in the field, contributing to the knowledge of the epidemiology of this disease in Mediterranean climates. In the future, the effect observed in cv. Cabernet Sauvignon with D. seriata on virulence at different tissue ages should be tested for other BD-causing agents and wine varieties.

5.
Plant Dis ; 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34931890

RESUMO

In Chile, tomato is one of the most widely cultivated vegetables, with around 5,000 ha for fresh market and 8,000 ha for processing industry. During recent years, symptoms of bacterial speck caused by Pseudomonas syringae pv. tomato, have been observed more frequently in tomato plants in different regions of Chile. This pathogen was first identified in Chile in 1987 (Latorre & Lolas, 1988) and the presence of an apparent new variant was reported in 2004 (Besoain et al. 2004). To characterize the pathogen that was affecting this crop, samples of diseased tomato plants were taken in three regions of Chile. The samples were collected in 2016 in Northern Chile in Lluta Valley from the Arica y Parinacota Region, and in Central Chile, in 2014 in Limache from Valparaíso Region and in 2015 in Pichidegua from O´Higgins Region. Affected tomato plants exhibited dark brown to black lesions surrounded by yellow halos in the leaves, and dark brown to black lesions in the stems, pedicels, and peduncles. Plants tissues were macerated, and the suspension was spread on King's B medium, resulting in fluorescent colonies visualized under 366 nm UV light. LOPAT tests results of three selected isolates from different Regions, were: levan production (+), oxidase reaction (-), potato soft rot (-), arginine dihydrolase production (-), and tobacco hypersensitivity (+) (Lelliot et al. 1966). Molecular identification was carried out by amplification and sequence analysis of housekeeping genes cts, encoding citrate synthase, gyrB, encoding DNA gyrase B, and rpoD, encoding sigma factor 70 (Hwang et al. 2005; Sarkar & Guttmann 2004) (GenBank Accessions No. OK001658-OK001666). BLAST analysis of cts and rpoD genes of the three isolates resulted in a match with a 100% identity (919 bp and 491 bp respectively) with Pseudomonas syringae pv. tomato strain B13-200 (GenBank: CP019871.1). BLAST analysis of gyrB gene of two isolates resulted in a match with a 100% identity (684 bp) and one isolate with 99.85% (683 bp) with Pseudomonas syringae pv. tomato strain B13-200. To identify the race 1, each strain was inoculated in five tomato plants cv. San Pedro, susceptible to both races of P. syringae pv. tomato, and cv. Rio Grande, resistant to race 0. The tomato plants were slightly wounded with a metal sponge and then sprayed with the bacterial suspension (108 CFU mL-1) of each isolate, including the reference strain DC3000 (race 0). Negative controls were sprayed with water. The plants inoculated with Chilean strains in both cv. San Pedro and cv. Rio Grande, showed symptoms of bacterial speck after 7 days. Plants inoculated with DC3000 strain showed symptoms only in cv. San Pedro, whereas control plants remained asymptomatic. Strains were re-isolated from symptomatic plants and identified by gene sequence analyses as Pseudomonas syryngae pv. tomato. This is the first report of Pseudomonas syryngae pv. tomato race 1 in Chile. Race 1 was previously reported in Canada (Lawton and MacNeill. 1986), in Italy (Buonaurio et al. 1996), in California (Arredondo and Davis 2000), in Portugal (Cruz et al. 2010), and in other states in the USA and countries in South America, Europe, Africa, and Australia, becoming the most commonly isolated race today (Cai et al 2011). These results will be the base for future studies of epidemiology, characterization, and virulence in order to explain the outbreak of this disease and the severity of symptoms observed.

6.
Antibiotics (Basel) ; 10(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34572714

RESUMO

Tomatoes (Solanum lycopersicum L.) are the most cultivated and important vegetable crop in the world. These plants can wilt during crop growth due to fusarium wilt (fusariosis), a disease that damages tomato vascular systems. The Fusarium isolated and analyzed in this work correspond to Fusarium oxysporum f. sp. radicis-lycopersici. The isolates were molecularly identified, and analysis was done on the in vitro effects of the nanoemulsions (previously obtained from extracts of Chilean medicinal plants of the genera Psoralea and Escallonia) to inhibit mycelial and conidial germination of the isolates. Subsequently, the nanoemulsions were evaluated under greenhouse conditions for preventive control of fusariosis in the root and crown, with high levels of disease control observed using the highest concentrations of these nanoemulsions, at 250 and 500 ppm.

7.
Antibiotics (Basel) ; 10(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34356739

RESUMO

The aim of this study was to synthesize a series of novel and known dihydrocarvone-hybrid derivatives (2-9) and to evaluate mycelial growth activity of hybrid molecules against two strains of Monilinia fructicola, as well as their toxicity. Dihydrocarvone-hybrid derivatives have been synthesized under sonication conditions and characterized by FTIR, NMR, and HRMS. Antifungal efficacy against both strains of M. fructicola was determined by half maximal effective concentration (EC50) and toxicity using the brine shrimp lethality test (BSLT). Among the synthesized compounds, 7 and 8 showed the best activity against both strains of M. fructicola with EC50 values of 148.1 and 145.9 µg/mL for strain 1 and 18.1 and 15.7 µg/mL for strain 2, respectively, compared to BC 1000® (commercial organic fungicide) but lower than Mystic® 520 SC. However, these compounds showed low toxicity values, 910 and 890 µg/mL, respectively, compared to Mystic® 520 SC, which was highly toxic. Based on the results, these hybrid compounds could be considered for the development of more active, less toxic, and environmentally friendly antifungal agents against phytopathogenic fungi.

8.
Microorganisms ; 9(7)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34361965

RESUMO

Clavibacter michiganensis subsp. michiganensis (Cmm) is the causal agent of bacterial canker of tomato. Differences in virulence between Cmm strains have been reported. The aim of this study was the characterization of nine Cmm strains isolated in Chile to reveal the causes of their differences in virulence. The virulence assays in tomato seedlings revealed different levels of severity associated with the strains, with two highly virulent strains and one causing only mild symptoms. The two most virulent showed increased cellulase activity, and no cellulase activity was observed in the strain causing mild symptoms. In three strains, including the two most virulent strains, PCR amplification of the 10 virulence genes analyzed was observed. In the strain causing mild symptoms, no amplification was observed for five genes, including celA. Sequence and cluster analyses of six virulence genes grouped the strains, as has been previously reported, except for gene pelA1. Gene sequence analysis from the genomes of five Chilean strains revealed the presence of deletions in the virulence genes, celB, xysA, pat-1, and phpA. The results of this study allow us to establish correlations between the differences observed in disease severity and the presence/absence of genes and deletions not previously reported.

9.
Antibiotics (Basel) ; 10(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205962

RESUMO

Table grapes (Vitis vinifera) are affected by botrytis bunch rot and summer bunch rot, the latter a complex disease caused by Botrytis cinerea, Aspergillus spp., Penicillium expansum and Rhizopus stolonifer. To search for biocontrol alternatives, a new bioproduct composed of Gluconobacter cerinus and Hanseniaspora osmophila, a consortium called PUCV-VBL, was developed for the control of fungal rots in table grapes. Since this consortium presents new biocontrol species, the effect of their VOCs (volatile organic compounds) was evaluated under in vitro and in vivo conditions. The VOCs produced by the PUCV-VBL consortium showed the highest mycelial inhibition against Botrytis cinerea (86%). Furthermore, H. osmophila was able to inhibit sporulation of A. tubingensis and P. expansum. VOCs' effect in vivo was evaluated using berries from Red Globe, Thompson Seedless and Crimson Seedless grapes cultivars, demonstrating a mycelial inhibition by VOCs greater than 70% for all evaluated fungal species. The VOC identification of the PUCV-VBL consortium was analyzed by solid-phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GCMS). A total 26 compounds were identified, including 1-butanol 3-methyl, propanoic acid ethyl ester, ethyl acetate, phenylethyl alcohol, isobutyl acetate and hexanoic acid ethyl ester. Our results show that VOCs are an important mode of action of the PUCV-VBL biological consortium.

10.
Antibiotics (Basel) ; 10(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199335

RESUMO

Gray and summer bunch rot are important diseases of table grapes due to the high economic and environmental cost of their control with synthetic fungicides. The ability to produce antifungal compounds against the causal agents Botrytis, Aspergillus, Penicillium, and Rhizopus of two microorganisms isolated from table grapes and identified as Hanseniaspora osmophila and Gluconobacter cerinus was evaluated. In dual cultures, both biocontrol agents (together and separately) inhibited in vitro mycelial growth of these pathogens. To identify the compounds responsible for the inhibitory effect, extractions were carried out with organic solvents from biocontrol agents separately. Through dual cultures with pathogens and pure extracts, only the hexane extract from H. osmophila showed an inhibitory effect against Botrytis cinerea. To further identify these compounds, the direct bioautography technique was used. This technique made it possible to determine the band displaying antifungal activity at Rf = 0.05-0.2. The compounds present in this band were identified by GC-MS and compared to the NIST library. The most abundant compounds, not previously reported, corresponded to alkanes, ketones, alcohols, and terpenoids. H. osmophila and G. cerinus have the potential to control the causal agents of gray and summer bunch rot of table grapes.

11.
Microorganisms ; 8(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137950

RESUMO

The genus Clavibacter has been associated largely with plant diseases. The aims of this study were to characterize the genomes and the virulence factors of Chilean C. michiganensis subsp. michiganensis strains VL527, MSF322 and OP3, and to define their phylogenomic positions within the species, Clavibacter michiganensis. VL527 and MSF322 genomes possess 3,396,632 and 3,399,199 bp, respectively, with a pCM2-like plasmid in strain VL527, with pCM1- and pCM2-like plasmids in strain MSF322. OP3 genome is composed of a chromosome and three plasmids (including pCM1- and pCM2-like plasmids) of 3,466,104 bp. Genomic analyses confirmed the phylogenetic relationships of the Chilean strains among C.michiganensis subsp. michiganensis and showed their low genomic diversity. Different virulence levels in tomato plants were observable. Phylogenetic analyses of the virulence factors revealed that the pelA1 gene (chp/tomA region)-that grouped Chilean strains in three distinct clusters-and proteases and hydrolases encoding genes, exclusive for each of the Chilean strains, may be involved in these observed virulence levels. Based on genomic similarity (ANIm) analyses, a proposal to combine and reclassify C. michiganensis subsp. phaseoli and subsp. chilensis at the species level, as C. phaseoli sp. nov., as well as to reclassify C. michiganensis subsp. californiensis as the species C. californiensis sp. nov. may be justified.

12.
Antibiotics (Basel) ; 9(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899705

RESUMO

This work reports on the synthesis of eight new 2'-hydroxy-chalcones with potential anti-phytopathogenic applications in agroindustry, among others, via Claisen-Schmidt condensation and ultrasound assisted reaction. Assays showed three chalcones with allyl moieties strongly inhibited growth of phytopathogenic oomycete Phytophthora infestans; moreover, compound 8a had a half maximal effective concentration (EC50) value (32.5 µg/mL) similar to that of metalaxyl (28.6 µg/mL). A software-aided quantitative structure-activity relationship (QSAR) analysis of the whole series suggests that the structural features of these new chalcones-namely, the fluoride, hydroxyl, and amine groups over the carbon 3' of the chalcone skeleton-increase anti-oomycete activity.

13.
Microorganisms ; 8(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610695

RESUMO

Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of a bacterial canker in kiwifruit plants and has caused economic losses worldwide. Currently, the primary strategies to control this pathogen include the use of copper-based compounds and even antibiotics. However, the emergence of isolates of Psa that are resistant to these agrochemicals has raised the need for new alternatives to control this pathogen. Bacteriophages have been proposed as an alternative to control bacterial infections in agriculture, including Psa. Here, we show the isolation and characterization of 13 phages with the potential to control Psa infections in kiwifruit plants. The phages were characterized according to their host range and restriction fragment length polymorphism (RFLP) pattern. Four phages were selected according to their lytic effect on the bacteria and their tolerance to different environmental conditions of pH (4-7), temperature (4-37 °C), and solar radiation exposure (30 and 60 min). The selected phages (CHF1, CHF7, CHF19, and CHF21) were sequenced, revealing a high identity with the podophage of Psa phiPSA2. In vitro assays with kiwifruit leaf samples demonstrated that the mixture of phages reduced the Psa bacterial load within three hours post-application and was able to reduce the damage index in 50% of cases. Similarly, assays with kiwifruit plants maintained in greenhouse conditions showed that these phages were able to reduce the Psa bacterial load in more than 50% of cases and produced a significant decrease in the damage index of treated plants after 30 days. Finally, none of the selected phages were able to infect the other bacteria present in the natural microbiota of kiwifruit plants. These results show that bacteriophages are an attractive alternative to control Psa infections in kiwifruit plants.

14.
Antibiotics (Basel) ; 9(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532060

RESUMO

In the present study, seven 2',4'-dihydroxydihydrochalcone derivatives (compounds 3-9) were synthesized and their capacity as anti-Saprolegnia agents were evaluated against Saprolegnia parasitica, S. australis, S. diclina. Derivative 9 showed the best activity against the different strains, with minimum inhibitory concentration (MIC) and minimum oomyceticidal concentration (MOC) values between 100-175 µg/mL and 100-200 µg/mL, respectively, compared with bronopol and fluconazole as positive controls. In addition, compound 9 caused damage and disintegration cell membrane of all Saprolegnia strains over the action of commercial controls.

15.
Plant Dis ; 104(3): 921-929, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31910117

RESUMO

Clonal rootstocks are one alternative used by the walnut industry to control damage caused by Phytophthora species, traditionally using plants grafted on susceptible Juglans regia rootstock. Vlach, VX211, and RX1 are clonal rootstocks with a degree of resistance to Phytophthora species. The resistance to pathogens in these rootstocks depends on the resistance mechanisms activated by the presence of the pathogen and subsequent development of responses in the host. In this work, we analyzed how plants of J. regia, Vlach, VX211, and RX1 responded to inoculation with Phytophthora cinnamomi or Phytophthora citrophthora isolates obtained from diseased English walnut plants from Chilean orchards. After inoculation, plants of Vlach, VX211, and RX1 showed canopy and root damage indexes that did not differ from noninoculated control plants. In contrast, plants of J. regia, which is susceptible to P. cinnamomi and P. citrophthora, died after inoculation. Vlach, VX211, and RX1 plants inoculated with P. cinnamomi or P. citrophthora showed greater root weight and volume and greater root growth rates than their respective controls. These results suggest that short-term carbohydrate dynamics may be related to the defense mechanisms of plants; they are immediately activated after inoculation through the production of phenolic compounds, which support the further growth and development of roots in walnut clonal rootstocks. To our knowledge, this is the first study that comprehensively characterizes vegetative and radicular growth and the dynamics of sugars and phenols in response to infection with P. cinnamomi or P. citrophthora in walnut rootstocks.


Assuntos
Infecções , Juglans , Phytophthora , Chile , Humanos , Doenças das Plantas , Raízes de Plantas
16.
Antibiotics (Basel) ; 8(4)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618883

RESUMO

Candida is a genus of yeasts and is the most common cause of fungal infections worldwide. However, only a few antifungal drugs are currently available for the treatment of Candida infections. In the last decade, terpenophenols have attracted much attention because they often possess a variety of biological activities. In the search for new antifungals, eight carveoylphenols were synthesized and characterized by spectroscopic analysis. By using the broth microdilution assay, the compounds were evaluated for antifungal activities in vitro against four human pathogenic yeast, and structure-activity relationships (SAR) were derived. Noteworthy, in this preliminary study, compounds 5 and 6, have shown a significant reduction in the growth of all Candida strains tested. Starting from these preliminary results, we have designed the second generation of analogous in this class, and further studies are in progress in our laboratories.

17.
Plant Dis ; 103(4): 691-696, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30789315

RESUMO

English (Persian) walnut (Juglans regia) trees affected by root and crown rot were surveyed in five regions of central Chile between 2015 and 2017. In each region, nine orchards, ranging from 1 to 21 years old, were randomly selected and inspected for incidence and severity of tree decline associated with crown and root rot. Soil and symptomatic crown and root tissues were collected and cultured in P5ARP semiselective medium to isolate potential oomycete pathogens, which were identified through morphology and molecularly using ITS sequences in the rDNA gene and beta tubulin gene. The most frequently isolated species was Phytophthora cinnamomi. Pathogenicity tests were conducted with representative oomycete isolates. P. cinnamomi, P. citrophthora, and Pythium ultimum were all pathogenic in J. regia. Nevertheless, only P. cinnamomi and P. citrophthora were pathogenic to English walnut. Py. ultimum caused limited levels of root damage to English walnut seedlings. Our research indicates that as the Chilean walnut industry has expanded, so have walnut crown and root rots induced by oomycetes.


Assuntos
Juglans , Oomicetos , Doenças das Plantas , Raízes de Plantas , Chile , Juglans/microbiologia , Oomicetos/fisiologia , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia
18.
Front Microbiol ; 9: 1907, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186252

RESUMO

In recent years, Chilean kiwifruit production has been affected by the phytopathogen Pseudomonas syringae pv. actinidiae (Psa), which has caused losses to the industry. In this study, we report the genotypic and phenotypic characterization of 18 Psa isolates obtained from Chilean kiwifruits orchards between 2012 and 2016 from different geographic origins. Genetic analysis by multilocus sequence analysis (MLSA) using four housekeeping genes (gyrB, rpoD, gltA, and gapA) and the identification of type III effector genes suggest that the Chilean Psa isolates belong to the Psa Biovar 3 cluster. All of the isolates were highly homogenous in regard to their phenotypic characteristics. None of the isolates were able to form biofilms over solid plastic surfaces. However, all of the isolates formed cellular aggregates in the air-liquid interface. All of the isolates, except for Psa 889, demonstrated swimming motility, while only isolate Psa 510 demonstrated swarming motility. The biochemical profiles of the isolates revealed differences in 22% of the tests in at least one Psa isolate when analyzed with the BIOLOG system. Interestingly, all of the isolates were able to produce indole using a tryptophan-dependent pathway. PCR analysis revealed the presence of the genes aldA/aldB and iaaL/matE, which are associated with the production of indole-3-acetic acid (IAA) and indole-3-acetyl-3-L-lysine (IAA-Lys), respectively, in P. syringae. In addition, IAA was detected in the cell free supernatant of a representative Chilean Psa strain. This work represents the most extensive analysis in terms of the time and geographic origin of Chilean Psa isolates. To our knowledge, this is the first report of Psa being able to produce IAA. Further studies are needed to determine the potential role of IAA in the virulence of Psa during kiwifruit infections and whether this feature is observed in other Psa biovars.

19.
Molecules ; 23(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115841

RESUMO

Tomato crops can be affected by several infectious diseases produced by bacteria, fungi, and oomycetes. Four phytopathogens are of special concern because of the major economic losses they generate worldwide in tomato production; Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato, causative agents behind two highly destructive diseases, bacterial canker and bacterial speck, respectively; fungus Fusarium oxysporum f. sp. lycopersici that causes Fusarium Wilt, which strongly affects tomato crops; and finally, Phytophthora spp., which affect both potato and tomato crops. Polygodial (1), drimenol (2), isonordrimenone (3), and nordrimenone (4) were studied against these four phytopathogenic microorganisms. Among them, compound 1, obtained from Drimys winteri Forst, and synthetic compound 4 are shown here to have potent activity. Most promisingly, the results showed that compounds 1 and 4 affect Clavibacter michiganensis growth at minimal inhibitory concentrations (MIC) values of 16 and 32 µg/mL, respectively, and high antimycotic activity against Fusarium oxysporum and Phytophthora spp. with MIC of 64 µg/mL. The results of the present study suggest novel treatment alternatives with drimane compounds against bacterial and fungal plant pathogens.


Assuntos
Antibacterianos/química , Agentes de Controle Biológico/química , Fungicidas Industriais/química , Sesquiterpenos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Agentes de Controle Biológico/isolamento & purificação , Fungicidas Industriais/isolamento & purificação , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Phytophthora/efeitos dos fármacos , Casca de Planta/química , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Sesquiterpenos/isolamento & purificação , Traqueófitas/química
20.
Electron. j. biotechnol ; 13(2): 1-2, Mar. 2010. ilus, tab
Artigo em Inglês | LILACS | ID: lil-567079

RESUMO

Biocontrol of Rhizoctonia solani in tomatoes cultivated under greenhouse and field conditions was analyzed using the Trichoderma harzianum mutants Th650-NG7, Th11A80.1, Th12A40.1, Th12C40.1 and Th12A10.1 and ThF2-1, respectively. Their innocuousness on tomato cultivars 92.95 and Gondola (greenhouse assays), and on cultivar Fortaleza (field assays) was established. Alginate pellets (1.7 g pellets/L soil) containing c.a1 x 10(5) colony forming units (cfu)/g pellet were applied to a soil previously inoculated with R. solani at transplant (greenhouse) or to a naturally infected soil (field). Controls considered parental wild strains, a chemical fungicide and no additions. Th11A 80.1, Th12A10.1 and Th650-NG7 prevented the 100% mortality of tomato plants cv. 92.95 caused by R. solani, and the 40% mortality in tomato plants cv. Gondola (greenhouse assays). Mortality reduction was reflected in canker level lessening and in plant parameters increases (development, fresh and dry weights). A different degree of susceptibility of tomato plants was observed, being Gondola cv. more resistant than 92.95 cv. to infection in a soil previously inoculated with R. solani. Tomato plants of cv. Fortaleza did not show mortality in naturally infected soils (field assays), where the mutant ThF2-1 reduced significantly the canker level caused by R. solani.


Assuntos
Antibiose , Controle Biológico de Vetores/métodos , Solanum lycopersicum/microbiologia , Rhizoctonia/fisiologia , Trichoderma/fisiologia , Doenças das Plantas/microbiologia , Estufas para Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Mutagênese , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Microbiologia do Solo , Trichoderma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...